If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x+x^2=120
We move all terms to the left:
20x+x^2-(120)=0
a = 1; b = 20; c = -120;
Δ = b2-4ac
Δ = 202-4·1·(-120)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{55}}{2*1}=\frac{-20-4\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{55}}{2*1}=\frac{-20+4\sqrt{55}}{2} $
| 5n+27=42 | | ½x+2=¾x-7 | | -8g-6=-30 | | -5t^2+15t=-100 | | 24=3(2x-6) | | 4f+6=30 | | 2+3x(8+53÷1)= | | 1b=150 | | 30=4e+14 | | 112+85+68+x=360 | | -5t^2+15=-100 | | O.6x+1.9x=5 | | -4+3y=11 | | 80=4b | | 29-9x=506 | | 3^2+6^2=c^2 | | 112+85+68+x=180 | | 12.25+144=(y+3.5)(y+3.5) | | 4a=19=96 | | 6x+3=6x–20–x | | 16=3p-2 | | -2(3w+6)=24 | | (1/4)y+3=12 | | 7+-6x=3 | | -7x+8=9 | | -7s-10=11 | | 7/x=8/24 | | 3(3c-4)=42 | | 3(x-2)+1=2x-5+x | | 2(2a+4)=28 | | 1.8+6x-3.2=7.6 | | 2x+80=560 |